
ECCO v4 Documentation
Release 0.1.0

Gael Forget

Sep 28, 2023

CONTENTS:

1 Introduction 3

2 Download 5
2.1 Model Solution . 5
2.2 Model Setup . 5

3 Analyze 7
3.1 Julia Toolbox . 7
3.2 Python Toolbox . 7
3.3 Matlab Toolbox . 7
3.4 Other Resources . 7

4 Reproduce 9
4.1 The Release 2 Solution . 9
4.2 Other Known Solutions . 11
4.3 Short Forward Tests . 11
4.4 Other Short Tests . 12

Bibliography 13

i

ii

ECCO v4 Documentation, Release 0.1.0

Learn to download, analyze, or reproduce ECCO version 4 solutions [FCH+15]. In Download, Analyze, and Reproduce
we focus on ECCO V4r2 as an example, and link to other solutions.

CONTENTS: 1

ECCO v4 Documentation, Release 0.1.0

2 CONTENTS:

CHAPTER

ONE

INTRODUCTION

ECCO version 4 is an ocean state estimate [FCH+15] and solution of the MIT general circulation model (MITgcm).
ECCO V4 release 2 (V4r2) covers the period from 1992 to 2011 [FCH+16].

Download for an installation guide and links to data.

Analyze for analyses tools in Julia, Python, Matlab.

Reproduce for simple instructions to reproduce the model simulation.

Note: Reproducing the model simulation (in the cloud or locally) enables you to generate additional output if needed,
or prepare a new numerical experiment with the model for example.

3

http://mitgcm.org

ECCO v4 Documentation, Release 0.1.0

4 Chapter 1. Introduction

CHAPTER

TWO

DOWNLOAD

This section provides directions to download the ECCO V4r2 model output for analysis (Section 2.1), or download the
underlying model setup to reproduce ECCO V4r2 (Section 2.2).

2.1 Model Solution

ECCO V4r2 was the first update to the original ECCO V4 solution [FCH+15] with :

1. additional corrections listed in [FCH+16]

2. additional model-data misfit and model budget output

3. easier to rerun than ECCO version 4 release 1

The reference output for ECCO V4r2 is permanently archived in this Dataverse , which provides citable identifiers for
the various datasets (see README.pdf). For direct downloads we recommend Dataverse.jl in Julia with code provided
below.

Folders that start with nctiles_ contain data on the native LLC90 grid in the nctiles format [FCH+15]. This format
is easily read in Julia, Python, and Matlab/Octave (see Section 3.1).

Note: Alternatively interpolated fields, on a 1/2× 1/2∘ grid in standard NetCDF, is available via ecco-group.org.

Folders that start with input_ directories contain binary and netcdf input files for MITgcm (Section 4.1). The
profiles/ folder contains the MITprof collections of collocated in situ and state estimate profiles [FCH+15].

2.2 Model Setup

Donwload MITgcm source code and ECCO V4r2 setup from GitHub.

git clone https://github.com/MITgcm/MITgcm
git clone https://github.com/gaelforget/ECCOv4
mkdir MITgcm/mysetups
mv ECCOv4 MITgcm/mysetups/.

To run ECCO V4r2 requires surface forcing input (96G of 6-hourly fields), initial condition, grid, etc. input (610M),
and observational input (25G) from this Dataverse.

5

https://dataverse.harvard.edu/dataverse/ECCOv4r2
https://dataverse.harvard.edu/api/access/datafile/2863409
https://github.com/gdcc/Dataverse.jl#readme
https://julialang.org
https://ecco-group.org/products.html
https://github.com/MITgcm/MITgcm/
https://github.com/gaelforget/ECCOv4/
https://dataverse.harvard.edu/dataverse/ECCOv4r2inputs

ECCO v4 Documentation, Release 0.1.0

cd("MITgcm/mysetups/ECCOv4")
include("input/dowload_files.jl")
import Main.baseline2_files: get_list, get_files

list1=get_list()
[get_files(list1,nam1,pwd()) for nam1 in list1.name]

The Recommended Directory Organization is shown below. While organizing the downloaded directories differently
is certainly possible, the Section 4.1 instructions to Compile, Link, And Run the model and Verify Results Accuracy are
based on this organization.

Recommended Directory Organization

MITgcm/
model/ (MITgcm core)
pkg/ (MITgcm modules)
tools/
genmake2 (shell script)
build_options (compiler options)

mysetups/ (user created)
ECCOv4/
build/ (build directory)
code/ (compile-time settings)
input/ (run-time settings)
test/ (reference results)
forcing_baseline2/ (user installed)
inputs_baseline2/ (user installed)

Note: Some subdirectories are omitted in this depiction.

6 Chapter 2. Download

CHAPTER

THREE

ANALYZE

This section is focused on tools for analyzing outputs (Section 3.1), and additional resources (Section 3.4).

3.1 Julia Toolbox

To be continued . . .

3.2 Python Toolbox

To be continued . . .

3.3 Matlab Toolbox

The gcmfaces toolbox [FCH+15] can be used to analyze model output that has either been downloaded (Section 2.1)
or reproduced (Section 4.1) by users. From the command line, you can install either the Matlab version by executing:

git clone https://github.com/gaelforget/gcmfaces

or the Octave version by executing:

git clone -b octave https://github.com/gaelforget/gcmfaces

The gcmfaces toolbox can be used, e.g., to reproduce the standard analysis (i.e., the plots in [FCH+16]) from released,
nctiles model output (Section 2.1) or from plain, binary model output (Section 4.1). For more information, please
consult the gcmfaces user guide.

3.4 Other Resources

• A series of three presentations given during the May 2016 ECCO meeting at MIT provides an overview of ECCO
v4 data sets, capabilities, and applications (Overview; Processes; Tracers).

• Various Python tools are available to analyse model output (see, e.g., this tutorial).

• Any netcdf enabled software such as Panoply (available for MS-Windows, Linux, or macOS) can be used to plot
the interpolated output (interp_* directories).

7

http://gcmfaces.readthedocs.io/en/latest/
http://doi.org/10.13140/RG.2.2.33361.12647
http://doi.org/10.13140/RG.2.2.26650.24001
http://doi.org/10.13140/RG.2.2.36716.56967
https://github.com/ECCO-GROUP/ECCO-v4-Python-Tutorial
http://www.giss.nasa.gov/tools/panoply/

ECCO v4 Documentation, Release 0.1.0

• The stand-alone eccov4_lonlat.m program can be used to extract the lat-lon sector, which spans the 69S to 56N
latitude range, of native grid fields [FCH+15].

• ECCO v4 estimates can be plotted via the NASA Sea Level Change Portal tools (interpolated output) or down-
loaded from the Harvard Dataverse APIs (native grid input and output).

8 Chapter 3. Analyze

http://mit.ecco-group.org/opendap/ecco_for_las/version_4/release2/doc/eccov4_lonlat.m
https://sealevel.nasa.gov
https://dataverse.harvard.edu

CHAPTER

FOUR

REPRODUCE

This section first explains how the MITgcm can be used to re-run the ECCO v4 r2 solution over the 1992–2011 period
(Section 4.1). Other state estimate solutions (Section 4.2), short regression tests (Section 4.3), and optimization tests
(Section 4.4) are discussed afterwards.

Required Computational Environment

Running the model on a linux cluster requires gcc and gfortran (or alternative compilers), mpi libraries (for parallel
computation), and netcdf libraries (e.g., for the profiles package) as explained in the MITgcm documentations. In
ECCO v4 r2, the 20-year model run typically takes between 6 to 12 hours when using 96 cores and modern on-premise
clusters.

Users who may lack on-premise computational resources or IT support can use the included cloud computing recipe to
leverage Amazon Web Services’s cfncluster technology. This recipe sets up a complete computational environment
in the AWS cloud (hardware, software, model, and inputs). When this recipe was tested in January 2017, the 20-year
ECCO v4 r2 model run took under 36h using 96 vCPUs and AWS spot instances for a cost of about 40$.

4.1 The Release 2 Solution

This section assumes that MITgcm, the ECCO v4 setup, and model inputs have been installed according to the Rec-
ommended Directory Organization (see Section 2.2). Users can then Compile, Link, And Run the model to reproduce
ECCO v4 r2, and Verify Results Accuracy once the model run has completed.

Compile, Link, And Run

#1) compile model
cd MITgcm/mysetups/ECCOv4/build
../../../tools/genmake2 -mods=../code -optfile \

../../../tools/build_options/linux_amd64_gfortran -mpi
make depend
make -j 4
cd ..

#2) link files into run directory
mkdir run
cd run
ln -s ../build/mitgcmuv .
ln -s ../input/* .

(continues on next page)

9

http://mitgcm.org/public/docs.html
https://github.com/gaelforget/ECCOv4/tree/master/docs/example_scripts/

ECCO v4 Documentation, Release 0.1.0

(continued from previous page)

ln -s ../inputs_baseline2/* .
ln -s ../forcing_baseline2 .

#3) run model
mpiexec -np 96 ./mitgcmuv

Note: On most clusters, users would call mpiexec (or mpirun) via a queuing system rather than directly from the
command line. The cloud computing recipe provides an example.

Other compiler options, besides linux_amd64_gfortran, are provided by the MITgcm development team in MITgcm/
tools/build_options/ for cases when gfortran is not available. The number of cores is 96 by default as seen in
Compile, Link, And Run. It can be reduced to, e.g., 24 simply by copying code/SIZE.h_24cores over code/SIZE.h
before compiling the model and then running MITgcm with -np 24 rather than -np 96 in Compile, Link, And Run.
It can alternatively be increased to, e.g., 192 cores to speed up the model run or reduce memory requirements. In this
case one needs to use code/SIZE.h_192cores at compile-time and input/data.exch2_192cores at run-time.

Verify Results Accuracy

In Julia, testreport_ecco.jl provides means to evaluate the accuracy of solution re-runs [FCH+15]. To use it, open
julia and first proceed as follows:

using Distributed

@everywhere begin
include("test/testreport_ecco.jl")
using SharedArrays
end

report=eccotest.compute("run")

And then compare the reference result :

using CSV, DataFrames
ref_file="test/testreport_baseline2.csv"
ref=CSV.read(ref_file,DataFrame)

eccotest.compare(report,ref)

In Matlab, testreport_ecco.m provides means to evaluate the accuracy of solution re-runs [FCH+15]. To use it,
open Matlab or Octave and proceed as follows:

cd MITgcm/mysetups/ECCOv4;
p = genpath('gcmfaces/'); addpath(p); %this can be commented out if needed
addpath test; %This adds necessary .m and .mat files to path
mytest=testreport_ecco('run/'); %This compute tests and display results

When using an up-to-date copy of MITgcm and a standard computational environment, the expected level of accuracy
is reached when all reported values are below -3 [FCH+15]. For example:

--
& jT & jS & ... & (reference is)

(continues on next page)

10 Chapter 4. Reproduce

https://github.com/gaelforget/ECCOv4/tree/master/docs/example_scripts/

ECCO v4 Documentation, Release 0.1.0

(continued from previous page)

run/ & (-3) & (-3) & ... & baseline2
--

Accuracy tests can be carried out for, e.g., meridional transports using the gcmfaces toolbox (see Section 3.1), but the
most basic ones simply rely on the MITgcm standard output file (STDOUT.0000).

4.2 Other Known Solutions

ECCO version 4 release 3: extended solution that covers 1992 to 2015 and was produced by O. Wang at JPL; to
reproduce this solution follow O. Wang’s directions or those provided in ECCOv4r3_mods.md.

ECCO version 4 baseline 1: older solution that most closely matches the original, ECCO version 4 release 1, solution
of [FCH+15]; to reproduce this solution follow directions provided in ECCOv4r1_mods.md.

Users who may hold a TAF license can also:

1. compile the adjoint by replacing make -j 4 with make adall -j 4 in Compile, Link, And Run

2. activate the adjoint by setting useAUTODIFF=.TRUE., in input/data.pkg

3. run the adjoint by replacing mitgcmuv with mitgcmuv_ad in Compile, Link, And Run.

4.3 Short Forward Tests

To ensure continued compatibility with the up to date MITgcm, the ECCO v4 model setup is tested on a daily basis using
the MITgcm/verification/testreport command line utility that compares re-runs with reference results over a few
time steps (see below and the MITgcm howto for additional explanations). These tests use dedicated versions of the
ECCO v4 model setup which are available under MITgcm_contrib/verification_other/.

global_oce_llc90/ (595M) uses the same LLC90 grid as the production ECCO v4 setup does. Users are advised against
running even forward LLC90 tests with fewer than 12 cores (96 for adjoint tests) to avoid potential memory overloads.
global_oce_cs32/ (614M) uses the much coarser resolution CS32 grid and can thus be used on any modern laptop.
Instructions for their installation are provided in this README and that README, respectively. Once installed, the
smaller setup can be executed on one core, for instance, by typing:

cd MITgcm/verification/
./testreport -t global_oce_cs32

The test outcome will be reported to screen as shown in Sample Test Output. Daily results of these tests, which currently
run on the glacier cluster, are reported on this site. To test global_oce_llc90/ using 24 processors and gfortran the
corresponding command typically is:

cd MITgcm/verification/
./testreport -of ../tools/build_options/linux_amd64_gfortran \
-j 4 -MPI 24 -command 'mpiexec -np TR_NPROC ./mitgcmuv' \
-t global_oce_llc90

4.2. Other Known Solutions 11

ftp://ecco.jpl.nasa.gov/Version4/Release3/doc/ECCOv4r3_reproduction.pdf
https://github.com/gaelforget/ECCOv4/blob/master/docs/ECCOv4r3_mods.md
https://github.com/gaelforget/ECCOv4/blob/master/docs/ECCOv4r1_mods.md
http://www.fastopt.de/
http://mitgcm.org/public/docs.html
https://github.com/MITgcm/verification_other/
https://github.com/MITgcm/verification_other/tree/master/global_oce_llc90#readme
https://github.com/MITgcm/verification_other/tree/master/global_oce_cs32#readme
http://mitgcm.org/viewvc/*checkout*/MITgcm/MITgcm_contrib/verification_other/global_oce_llc90/README
http://mitgcm.org/viewvc/*checkout*/MITgcm/MITgcm_contrib/verification_other/global_oce_cs32/README
http://mitgcm.org/public/testing.html
https://github.com/MITgcm/verification_other/tree/master/global_oce_llc90#readme

ECCO v4 Documentation, Release 0.1.0

Sample Test Output

Below is an abbreviated example of testreport output to screen.

default 10 ----T----- ----S-----
G D M c m s m s
e p a R g m m e . m m e .
n n k u 2 i a a d i a a d
2 d e n d n x n . n x n .

Y Y Y Y>14<16 16 16 16 16 16 16 16 pass global_oce_cs32

Note: The degree of agreement (16 digits in Sample Test Output) may vary from computer to computer, and
testreport may even indicate FAIL, but this does not mean that users won’t be able to reproduce 20-year solutions
with acceptable accuracy in Section 4.1.

4.4 Other Short Tests

Running the adjoint tests associated with Section 4.3 requires: (1) holding a TAF license; (2) soft linking code/ to
code_ad/ in global_oce_cs32/ and global_oce_llc90/. Users that hold a TAF license can then further proceed with
the iterative optimization test case in global_oce_cs32/input_OI/. For this demo, the ocean model is replaced with a
simple diffusion equation.

The pre-requisites are:

1. run the adjoint benchmark in global_oce_cs32/ via testreport (see section 2.3).

2. Go to MITgcm/lsopt/ and compile (see MITgcm manual).

3. Go to MITgcm/optim/, replace natl_box_adjoint with global_oce_cs32 in the Makefile, and compile as ex-
plained in MITgcm manual to generate the optim.x executable. If this process failed, please contact mitgcm-
support@mit.edu

4. go to global_oce_cs32/input_OI/ and type source ./prepare_run

To match the reference results from input_OI/README, users should proceed as follows

1. ./mitgcmuv_ad > output.txt

2. ./optim.x > op.txt

3. increment optimcycle by 1 in data.optim

4. go back to step #1 to run the next iteration

5. type grep fc costfunction00* to display results

12 Chapter 4. Reproduce

http://www.fastopt.de/
https://github.com/MITgcm/verification_other/tree/master/global_oce_cs32#readme
https://github.com/MITgcm/verification_other/tree/master/global_oce_llc90#readme
https://github.com/MITgcm/verification_other/tree/master/global_oce_cs32/input_OI
https://github.com/MITgcm/verification_other/tree/master/global_oce_cs32#readme
https://mitgcm.readthedocs.io/en/latest/?badge=latest
https://mitgcm.readthedocs.io/en/latest/?badge=latest
mailto:mitgcm-support@mit.edu
mailto:mitgcm-support@mit.edu

BIBLIOGRAPHY

[FCH+15] G. Forget, J.-M. Campin, P. Heimbach, C. N. Hill, R. M Ponte, and C. Wunsch. ECCO version 4:
an integrated framework for non-linear inverse modeling and global ocean state estimation. Geoscien-
tific Model Development, 8(10):3071–3104, 2015. URL: http://www.geosci-model-dev.net/8/3071/2015/,
doi:10.5194/gmd-8-3071-2015.

[FCH+16] G. Forget, J.-M. Campin, P. Heimbach, C. N. Hill, R. M Ponte, and C. Wunsch. ECCO version 4: second
release. 2016. URL: http://hdl.handle.net/1721.1/102062.

13

http://www.geosci-model-dev.net/8/3071/2015/
https://doi.org/10.5194/gmd-8-3071-2015
http://hdl.handle.net/1721.1/102062

	Introduction
	Download
	Model Solution
	Model Setup

	Analyze
	Julia Toolbox
	Python Toolbox
	Matlab Toolbox
	Other Resources

	Reproduce
	The Release 2 Solution
	Other Known Solutions
	Short Forward Tests
	Other Short Tests

	Bibliography

